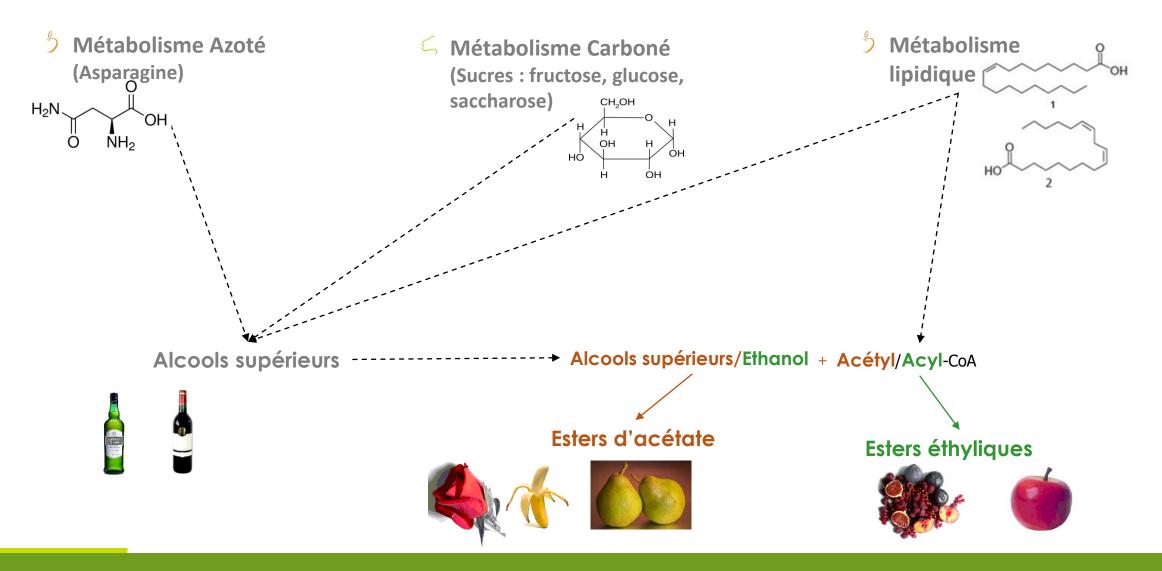


MONARC: MODULATION DES NOTES AROMATIQUES DES CALVADOS

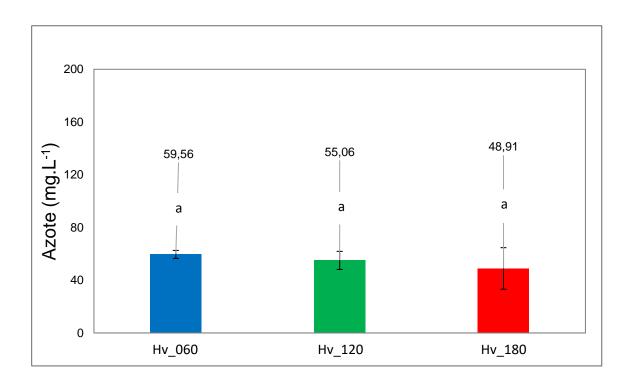
PRODUIRE UN CIDRE À DISTILLER POUR UNE EAU-DE-VIE FRUITÉE

GÉNÉRATION DES COMPOSÉS VOLATILS D'INTÉRÊT LORS DE LA FERMENTATION.

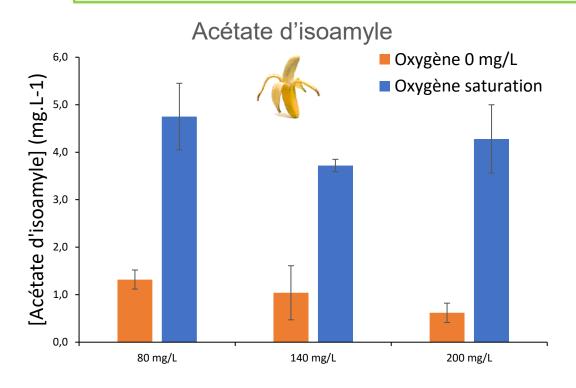


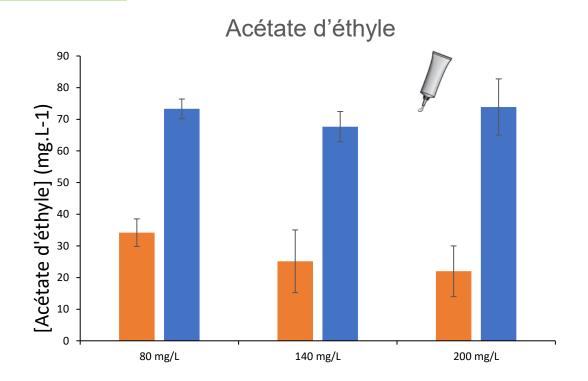
(IFPC)

DES POSTULATS DE DÉPART


- Section Calvados = produit cidricole d'où recherche d'arômes cidricoles
- En contexte « Cidre de Consommation » : Connaissance sur des levures cidricoles (Hanseniaspora valbyensis ; Saccharomyces uvarum)
 - 🖔 Génération d'arômes fruités (capacités estérifiantes d'*Hanseniaspora valbyensis*).
 - Pas de recul dans le contexte cidre de distillation
 - Utilisation pour un cidre de distillation?
 - Des composés d'intérêt identique?
- Intérêt de l'utilisation des levures viticoles (Saccharomyces cerevisiae) ?
- 5 Conservation au cours du temps?

GÉNÉRATION DE COMPOSÉS VOLATILS ALCOOLS, ESTERS, ALDÉHYDES, ACIDES GRAS

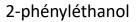

- 5 Hypothèse 1 :
 - Influence des principaux facteurs :
 - Azote (niveau)
 - S Oxygène
 - Disponibilité des précurseurs
 - Niveau de population
- 5 Hypothèse 2:
 - Hv107 génère des esters d'acétate contribuant aux notes aromatiques fruitées.

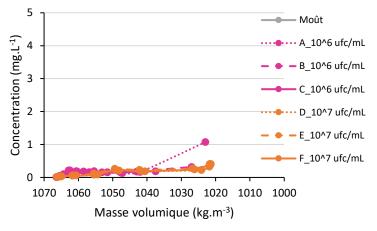

Se Consommation d'azote : la même quel que soit le niveau initial

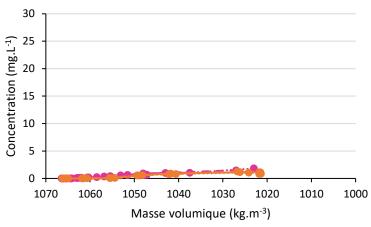
Seffet O2

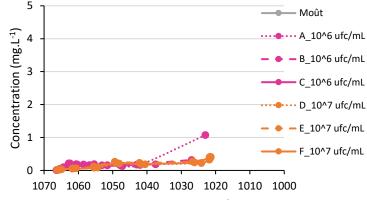
- 5 Acétate d'éthyle : x2 en aérobie
- Acétate d'isoamyle : x3 à 5 en aérobie

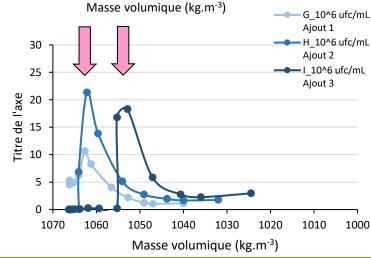
- 5 Souche aux capacités fermentaires limitées.
 - SArrêt entre 1040 et 1030 kg/m³
- SAction en début de fermentation :
 - Peu de précurseurs dans le milieu
 - 5 Esters en concentration moindre / potentiel : Consommation directe du précurseur ?
 - Acétate d'isoamyle (précurseur formé lors de fermentation)
 - Acétate d'hexyle (précurseur initialement présent dans le moût)



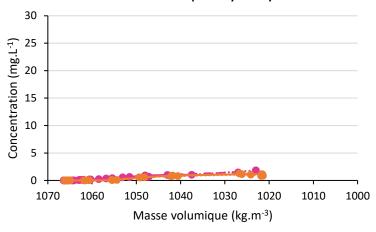

Acétate de 2-phényléthyle (Précurseur spécifique du cidre formé par Su)

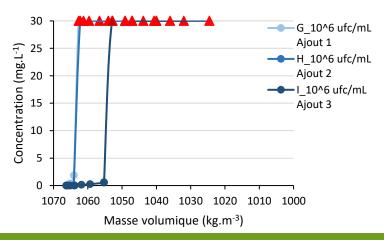

- Acétate de 2-phényléthyle sans lien
- Influence du précurseur


Acétate de 2-phényléthyle

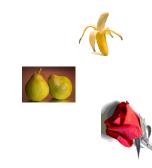


- Acétate de 2-phényléthyle sans lien
- Influence du précurseur





Acétate de 2-phényléthyle


Qu'en est- il de Saccharomyces uvarum?

- 5 Hypothèse 3 :
 - Su200 génère des composés volatils pouvant contribuer au fruité des cidres à distiller.

- 5 Hypothèse 4:
 - Influence des principaux facteurs :
 - 5 T°C
 - Niveau de population
 - 5 Disponibilité des précurseurs
 - Azote : type et niveau

Qu'en est-il de Saccharomyces uvarum?

- 5 Souche aux capacités fermentaires adaptées au cidre.
 - Génération de précurseurs (alcools supérieurs) pouvant donner des esters d'acétate ; par ex., 2-phényléthanol
 - Génération d'esters éthyliques intéressants (libération dans le milieu lors de la mort des levures : intérêt des distillations sur lies)
 - Sénération d'esters d'acétate
 - Acétate d'isoamyle
 - Acétate d'hexyle
 - 5 Acétate de 2-phényléthyle

⁵ Mais Esters en concentration limitée / Hv

Qu'en est-il de Saccharomyces uvarum?

- 5 Les Facteurs influençant la génération d'arômes.
 - ≤ T°C (10 20 °C): pas d'effet dans nos conditions
 - Solution = plus d'esters mais non proportionnel.
 - Azote
 - Moût pauvre = 2-phényléthanol (précurseur)

5 Moût riche = peu de 2-phényléthanol mais + acétate d'isoamyle

- 5 Si supplémentation, choisir la fin de croissance des levures (environ perte de 10pts MV)
- Intérêt du dosage d'azote ou de connaitre ses vergers pour anticiper le pilotage.
- Précurseurs dans le moût : hexanol = + acétate d'hexyle

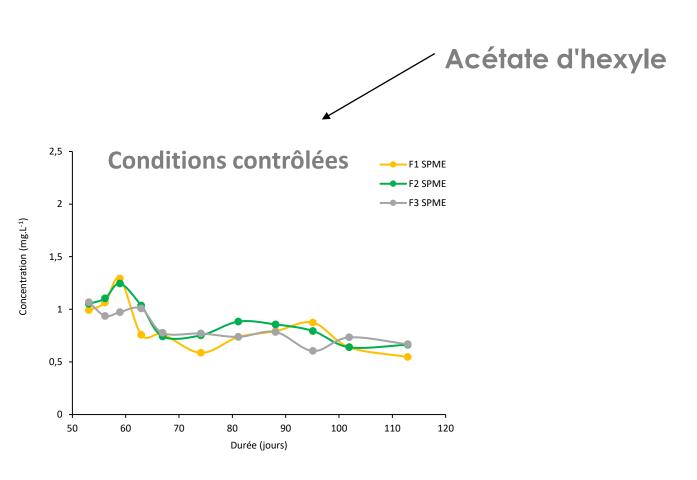
- 5 Impact maturité et/ou variétal
- ⁵ Technologie : cuvage par exemple ?

ET SACCHAROMYCES CEREVISIAE?

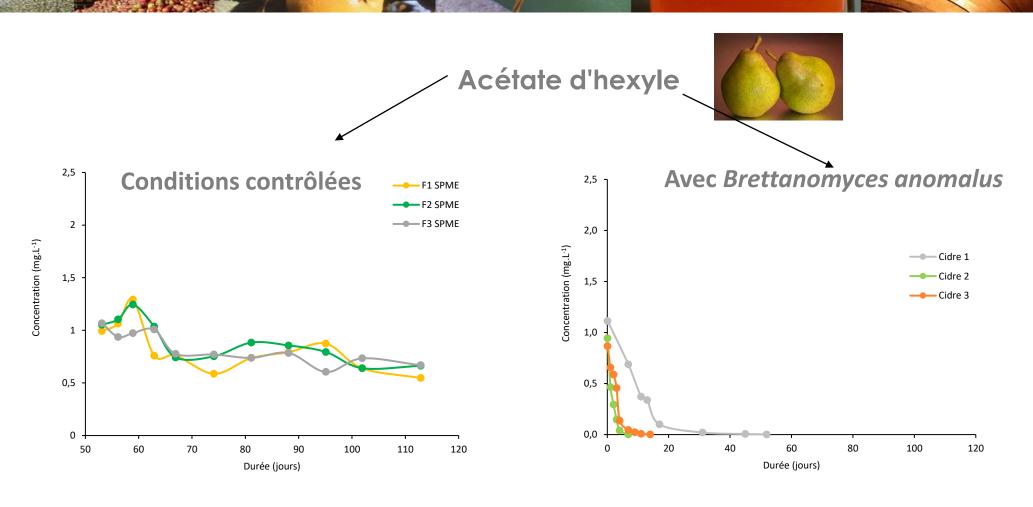
Normalement, se développe peu naturellement mais

- Quantité
- 5 Moment d'ajout

esters d'acétate



mais très peu de 2-phényléthanol.


- Sevaluation de différentes souches dans cadre de MoNArC
- 5 Travail de criblage de souches commerciales (en cours)
- Section Adaptées / Distillation ?

Qu'en est- il de la conservation des esters ?

Qu'en est- il de la conservation des esters ?

Dégradation rapide des esters d'acétate en présence de Brettanomyces.

CONCLUSION

- 5 Souches d'intérêt
 - Section Cidricoles mais non disponibles commercialement
 - Saccharomyces uvarum
 - Hanseniaspora valbyensis
 - Nécessité de contrôler O₂
 - 5 Sinon génération d'acétate d'éthyle

- S Vinicoles disponibles commercialement
 - 5 Saccharomyces cerevisiae
 - Ensemencement possible.

MoNArC: Modulation des Notes aromatiques des Calvados

Partenaires

Entreprises

Financeurs

INRAE, AgroParis Tech, ESA, ARAC

MONARC: MODULATION DES NOTES AROMATIQUES DES CALVADOS

