
Hygiène : la théorie

L'encrassement

L'adhésion, l'encrassement : souillure + support

Adhésion considérée comme réversible (attractions faibles)

-> Forces intermoléculaires de London van der Waals : FvdW

-> Forces électrostatiques attractives ou répulsives : FE

Adhésion considérée comme irréversible (attractions dominantes)

- -> Interactions polaires : liaison hydrogène, attraction hydrophobe, répulsion hydrophile : FAB
- -> Forces de courtes portées sont de loin les forces dominantes

L'encrassement

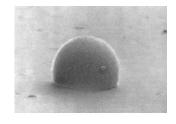
L'encrassement, qui sous sa forme la plus générale peut être défini comme l'accumulation d'éléments solides indésirables sur une interface, affecte une grande variété d'opérations industrielles

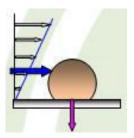
D'après Epstein (1981), différents types d'encrassement sont décrits :

- l'encrassement particulaire dû à une sédimentation,
- l'encrassement dû à la solidification d'un composé liquide sur une surface,
- l'encrassement dû a une réaction chimique sur une surface support,
- l'encrassement corrosif dû à une réaction du support, un rinçage insuffisant, une incompatibilité avec le matériau, et
- l'encrassement biologique comprenant des microorganismes, des matières organiques et des minéraux.

L'encrassement

Paramètres influant sur l'adhésion FA = FvdW + FE + FAB


- [1] Espèce, concentration, hydrophobicité de la souillure
- [2] Nature physico-chimique, charge, PH, hydrophobicité et **rugosité du support**
- [3] Contamination initiale, force ionique, PH, température, temps de contact, hydrodynamique


Décrochement si Forces d'arrachement > FA

Paramètres influant sur le décrochement

- [1] Action thermique
- [2] Action hydrodynamique

Le BIOFILM

• Définition :communauté microbienne contenue dans une matrice de polymères organiques, adhérant à une surface

...autrement dit : adhésion de micro-organismes à un support, qui forment une communauté microbienne et survivent en renforçant leur résistance aux agressions (détergents, désinfectants,...)

L'adhésion des micro-organismes aux surfaces dépend de :

- la nature du matériau, état de surface
- la nature du micro-organisme
- l'environnement :
 - ✓ interactions physico-chimiques (électrostatique, électrodynamique)
 - ✓ présence de polymères exocellulaires
 - ✓ conditions de survie (absence de nutriments)

Bio-adhésion

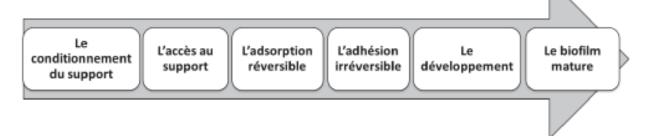
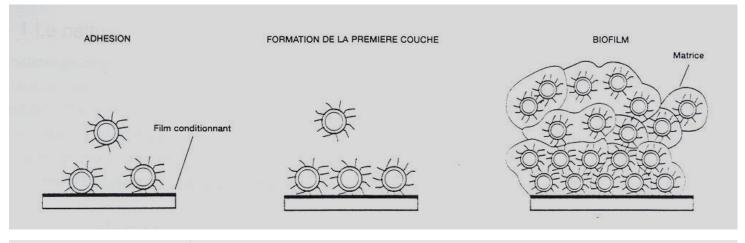
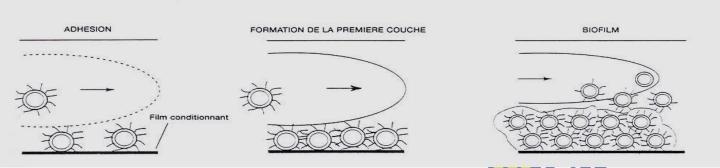




Figure I-4: Les six étapes du cycle de vie du biofilm

Les biofilms adhérent par sédimentation : biofilms en conditions statiques

Ils peuvent également adhérer en condition dynamique

Bio-adhésion - propriétés

Notion d'énergie d'interaction

Notion de réversibilité ou non (distance du support)

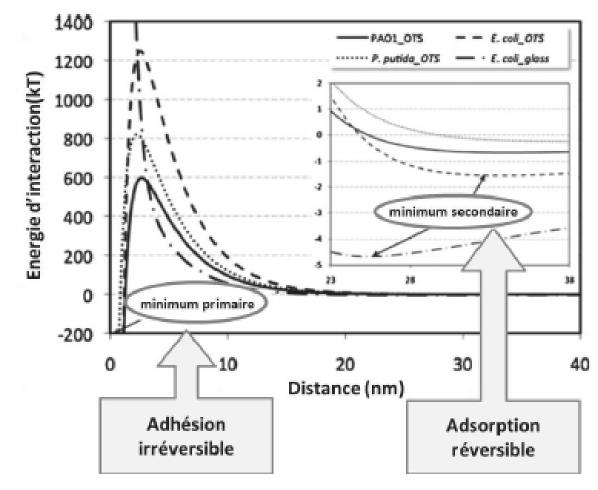
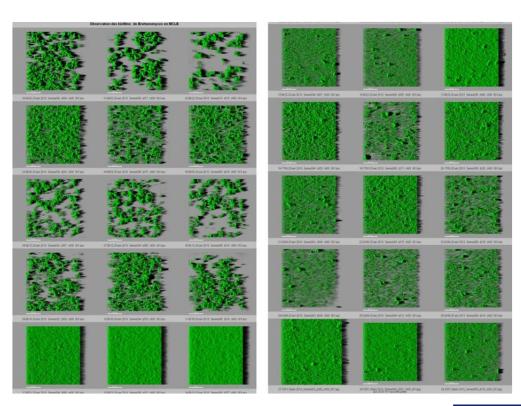
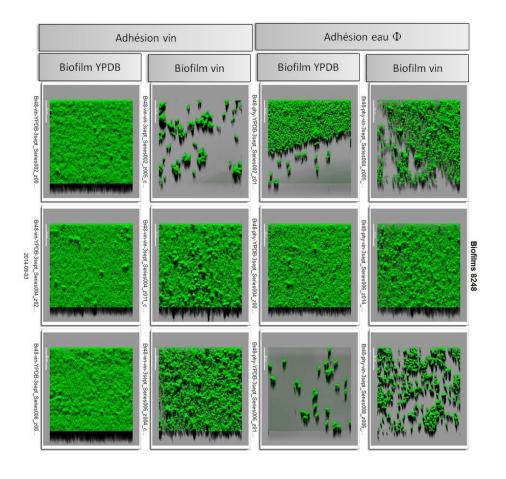
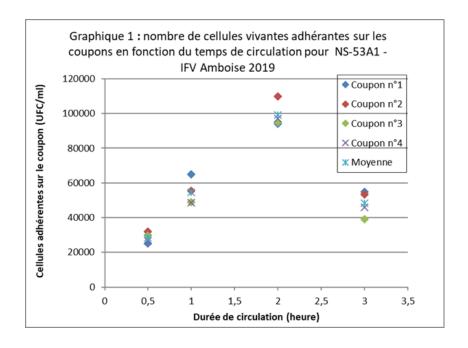



Figure I-7: Modèle de l'adhésion microbienne divisée en deux phases, l'une dite réversible, l'autre dite irréversible (adaptée Wang et al. (2011))



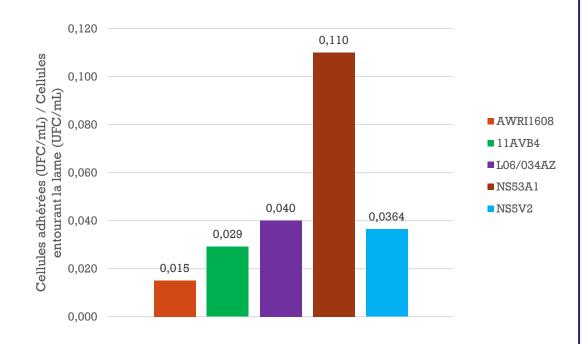
Bio-adhésion

Notion de structure de la bioadhésion



Notion de conditionnement de support

• Bio-adhésion


Bio-adhésion

Maintien au chai d'une population de souches génétiquement très proches Leur persistance est due en partie à leurs capacités à

- (i) adhérer et se multiplier à la surface d'éléments peu accessibles au nettoyage et à
- (ii) résister aux sulfites

Ces souches pourraient acquérir (génétiquement) avec le temps des capacités de bio-adhésion plus importantes!

Représentation du phénomène d'adhésion à 14 jours chez 5 souches de B. bruxellensis.

Bio-adhésion : le biofilm

Le Biofilm permet aux microorganismes de mieux se protéger des flux et cisaillements, par rapport à un état planctonique

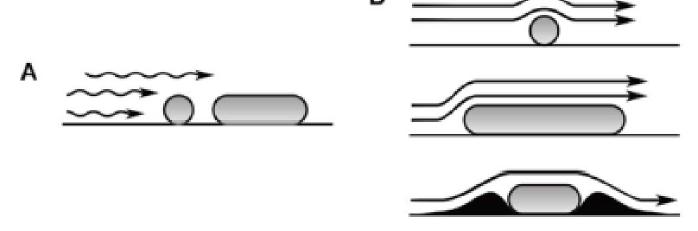


Figure I-14: Sélection et adaptation de la conformation de la cellule face au cisaillement. (Young, 2006)

Phénomènes de bio-adhésion

Bio-adhésion:

La bio-adhésion a des conséquences sur la physiologie microbienne :

- Croissance et contamination
- Production de métabolites secondaires
- Réactivité vis-à-vis d'agents antimicrobien

L'hygiène préventive peut limiter ces conséquences

Limiter l'encrassement, l'adhésion

La propreté des surfaces est assurée par l'application de forces d'arrachement supérieures aux forces d'adhésion des souillures.

L'utilisation de détergents et de chaleur permettent la diminution des forces de cohésion souillures-supports et rendent plus aisé l'arrachement des souillures quant elles sont soumises à un cisaillement généré par l'écoulement du fluide dans les équipements fermés.

Limiter l'encrassement, l'adhésion

En théorie... Selon le type de souillure, on choisira un type de produit adapté

Organique

Produit alcalin

Minérale

Produit acide

Microbienne

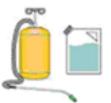
Produit désinfectant

Type de la souillure	Produits techniques à utiliser		
Provenant du moût et du vin			
Organique : lies, matières colorantes, micro- organismes, dépôts de sucres	Oxydants, tensioactifs, alcalins chlorés		
Composites : le dépôt organo-minéral (tartre) peut servir de support à la souillure organique elle-même favorisant le développement de foyers microbiens	Alcalins forts		
Étrangère au moût et au vin			
Graisse de lubrification et d'étanchéité	Alcalins, tensioactifs, alcalins forts si le support le permet		
Minérale (terre, carbonate de calcium)	Alcalins, acides		
Oxydes métalliques (de fer, de cuivre)	Acides		
Résidus d'étiquette, de colle	Alcalins et tensioactifs		
Poussière	Filtration de l'air		
Résidus de produits de nettoyage et de désinfection	Eau potable		

Dominante de la souillure	Solubilité (dissolution)	Facilité de nettoyage	Sensibilité à la chaleur	Qualité du produit nettoyant
Sucres solubles (glucose, saccharose)	■ Soluble dans l'eau	+++	Caramélisation (plus difficile à nettoyer)	Pouvoir : Solubilisant Saponifiant
Autres glucides (amidon, cellulose, polysaccharides)	Solubilité faible ou nulleFormation de gels	+	Variable	Pouvoir: Dispersant Hydrolysant Saponifiant
Matières grasses	■ Insolubles dans l'eau	++ dans détergents	Difficiles à nettoyer à haute température	Pouvoir: Émulsifiant Dispersant Mouillant
Protéines	 Solubilité variable dans l'eau Solubilité dans les solutions alcalines Précipitation possible en milieu acide 	+ dans l'eau +++ dans les solutions alcalines	Dénaturation (coagulation). Les dépôts sont plus difficiles à nettoyer	(alcalin) Pouvoir: Dispersant Solubilisant Hydrolysant Désagrégeant
Minéraux (sels, tartre, oxydes métalliques)	 Solubilité variable dans l'eau Solubilité dans les solutions acides, parfois dans les alcalines 	+++ à — suivant la solubilité	Précipitation difficile à nettoyer	(acide) Pouvoir: Complexant Solubilisant
Autres polluants indésirables	Solubilité variable	+++ a -		Pouvoir : Solubilisant Émulsifiant Séquestrant

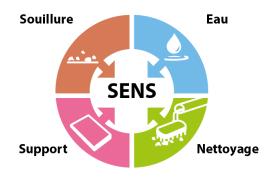
Туре	Composé détergent	Dissolution organique	Mouillant	Dispersion suspension	Rinçage	Complexation	Bactéricide suivant T°C
Alcalin	Soude caustique	5	0	0	1	0	2-6
	Carbonate de sodium	2	0	1	1	0	1-4
	Métasilicate de sodium	3	0	4	3	0	1-4
	Phosphate trisodique	2	0	4	3	0	1-4
Acide	Acide nitrique	2	1	0	2	-	2-6
	Acide phosphorique	2	1	2	2	-	1-4
	Acide sulfamide	1	0	0	2	-	1-4
	Acide gluconique	0	0	0	2	=	1-4
	Acide citrique	0	0	0	2	=	1-3
Agent	EDTA (limité dans certains pays)	0		2	5	5	1
séquestrant	Tripolyphosphate de sodium	2	0	3	2	3	0-1
	Gluconate de sodium	1	0	1	2	3	0-1
Agents de	Anionique	0	5	5	5	0	0
surface	Non ionique	0	5	5	5	0	0-1

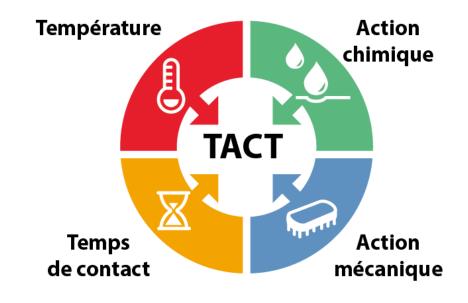
Légende: 0 = sans effet / 1-2-3-4-5-6 = effet croissant


Pré-nettoyage

Nettoyage

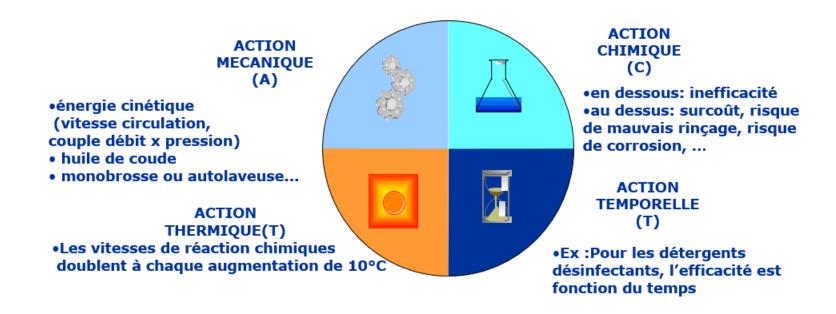
Rinçage


Désinfection



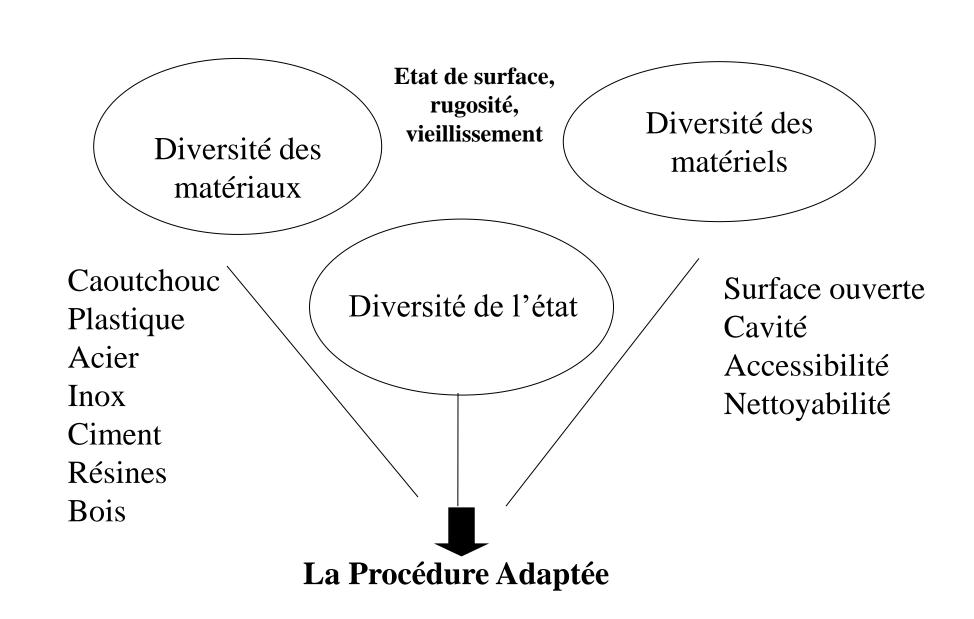
Rinçage

Séchage

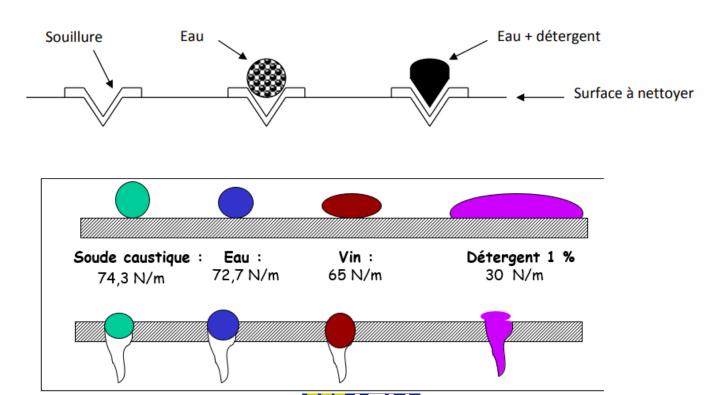


Limiter l'encrassement, l'adhésion

Le cercle de Sinner


Les plans de nettoyage sont décomposés en plusieurs étapes, 4 ou 6 selon la dissociation ou non du nettoyage et de la désinfection

	Objectif	Action	Remarques	Souillure SWA + Microorganisme Désinfectant
RANGEMENT ET PRÉ- NETTOYAGE	Dégager la zone de travail Eliminer les plus grosses souillures, visibles et adhérentes	Evacuation des déchets Dégagement des supports: Raclage, ou prélavage à l'eau chaude (50-60°C) sous basse (4-5 bars) ou moyenne pression (20- 30 bars), l'eau froide est totalement inefficace.	Le pré-nettoyage est important car l'élimination des souillures les plus grossières permet d'augmenter l'efficacité des produits de nettoyage et de désinfection qui seront appliqués ultérieurement. Le pré-nettoyage est réalisé au moment des pauses du personnel et en fin de journée.	Surface sale
NETTOYAGE	éliminer les souillures visibles (déchets d'aliments).	Utilisation d'un détergent, qui facilite le décollement des souillures Les méthodes d'application du détergent peuvent être variées : aspersion, trempage, lavette, éponge, balai, canon à mousse.	L'efficacité du détergent sera accrue si sa température, sa concentration et son temps d'action sont optimisés	Surface après nettoyage – physiquement propre


	Objectif	Action	Remarques	Souillure
RINÇAGE INTERMÉDIAIRE	éliminer les souillures résiduelles, éliminer les traces de détergent ou de mousse encore présentes et favoriser l'action du désinfectant appliqué à l'étape suivante.	Utilisation d'eau claire en aspersion, circulation par jet à basse pression.	La quantité d'eau résiduelle après rinçage doit être la plus faible possible, car elle risque de diluer le désinfectant, qui sera alors moins efficace : le rinçage intermédiaire favorise donc l'action du désinfectant qui est appliqué à l'étape suivante.	
DÉSINFECTION	réduire le nombre de micro- organismes restant sur les surfaces et les matériels, notamment les pathogènes.	par l'action d'un désinfectant. Le désinfectant peut être appliqué par pulvérisation, trempage, circulation ou par aspersion ou brumisation sur les surfaces et les matériels.	Son action ne sera efficace que si l'operateur respecte le temps d'action	Surface après désinfection bacteriologiquement propre
RINÇAGE FINAL	éliminer les traces de solution désinfectante.	par utilisation d'eau l'eau potable (jet basse pression, aspersion ou circulation d'eau) après avoir laissé agir le désinfectant,	C'est une étape qui est souvent négligée, mais importante. Certains produits sont dit sans rinçage en conformité avec l'arrêté de	Surface rès rinçage chimiquement propre
SÉCHAGE	Eviter une nouvelle multiplication des micro- organismes ayant résisté aux opérations de nettoyage/désinfection Limiter la corrosion	éliminer l'eau de rinçage, à l'aide par exemple de raclettes en caoutchouc. Utilisation de papiers à usage unique afin d'éviter la dispersion des micro organismes		

Aspects Physico-Chimiques de la Détergence

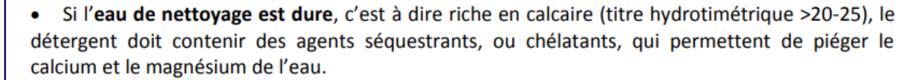
- •Qualités chimiques requises
- Caractéristiques physiques
- -**Pouvoir tensio-actif:** augmente le pouvoir de pénétration dans les fissures et l'action de couverture des surfaces

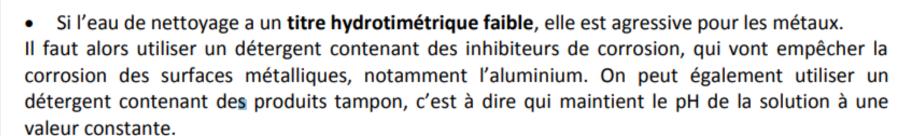
Aspects Physico-Chimiques de la Détergence

- •Qualités chimiques requises
- Caractéristiques physiques
- -Pouvoir de solubilisation des minéraux : acides sur tartre de l'eau, alcalin fort sur « tartre » du vin
- -Pouvoir de saponification : alcalin fort (soude, potasse) sur graisses
- -Pouvoir séquestrant : (EDTA, Gluconates) capture et complexe avec ions Ca++ et Mg++
- -Pouvoir Inhibiteur d'entartrage : (phosphonates) retarde ou supprime la formation des cristaux de carbonate de Ca ou Mg
- -Pouvoir anticorrosif: silicates en milieu alcalin, phosphonates en milieu acide, certains tenio-actifs
- -**Pouvoir oxydant** (solubilisation et dénaturation des composés organiques) : hypochlorite de sodium, peroxyde hydrogène

Aspects Physico-Chimiques de la Détergence

Molécule de base action chimique (basique, acide)

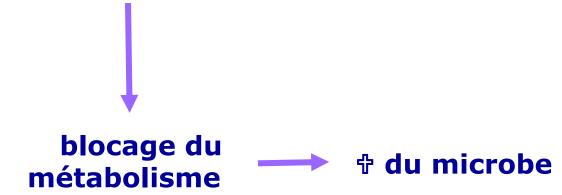

Tensio-actifs améliorent l'effet mouillant


Séquestrants ou chélatants piègent les cations (calcium, magnésium)

Inhibiteurs de corrosion limitent la corrosion due aux molécules de base

Stabilisant permettent à la solution de rester stable

L'eau de nettoyage doit être une eau potable



Aspects chimiques du Désinfectant

•Fixation du principe actif sur la paroi cellulaire, puis dénaturation, destruction des protéines de la membrane cytoplasmique = perforation ou blocage des échanges

Ou

Oxydation des constituants membranaires

Aspects chimiques du Désinfectant

- 1. Les désinfectants oxydants
- Le chlore
- L 'acide peracétique
- Les alcools
- -Le peroxyde d'hydrogène

- 2. Les désinfectants non oxydants
- Les Ammonium quaternaires
- Les sels de biguanides
- Les amines aliphatiques
- Les amphotères

Aspects chimiques du Désinfectant

Produits chlorés

AVANTAGES	INCONVENIENTS
Large spectre bactéricide/virucide	Sensibilité aux matières organiques
Action désodorisante	Risque de corrosion par ion Cl
Pas d'accoutumance	Manipulation
Action décolorante	Peu d'effet sur les moisissures
Dosable – traces détectables	TCA (Trichloroanisole)

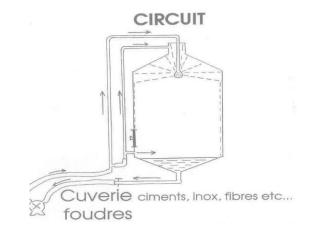
Aspects chimiques du Désinfectant

Acide peracétique

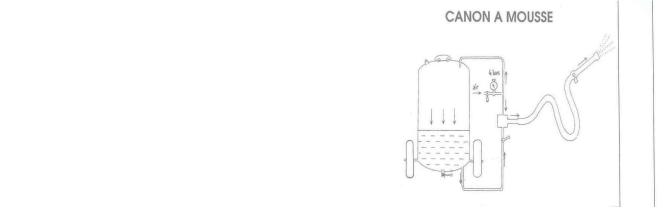
AVANTAGES	INCONVENIENTS
Action rapide sur les microbes	Manipulation
Large spectre bactéricide/virucide/fongicide	Sensible aux matières organiques
Produit à pH acide	Odeur
Action irréversible = Pas d'accoutumance	Risque de corrosion en présence de chlorures à chaud
Utilisable à froid	pH acide
Absence de résidus	Non détergent
Stabilité au stockage	
Utilisation possible sur les filtres à membranes	

Type de Nettoyage

Nettoyage des surfaces ouvertes


Produit moussant

•Utilisation à des températures inférieures à 45°C


Nettoyage en CIP nettoyage circuits, tanks, cuves

Produit non moussant

 Possibilité Utilisation à température élevée

CANON A MOUSSE

Le plan d'hygiène : Le choix des procédures et produits

8 étapes

- ✓ Étudier votre approvisionnement en eau (où ? Débit ? Pression ? Qualité ?)
- ✓ Faire l'inventaire des installations à traiter
- ✓ Lister les types de matériaux utilisés (corrosion)
- ✓ Faire le choix des process de nettoyage et/ou désinfection
- ✓ Déterminer les équipements nécessaires (fréquence d'utilisation, durée, faisabilité de l'installation)
- ✓ Définir des moyens de contrôle
- ✓ Veiller à la sécurité des opérateurs
- ✓ S'assurer du bon respect de l'environnement

L'Hygiène, c'est

- ✓ Assurer la qualité sensorielle et nutritionnelle du vin en limitant les contaminations menant aux altérations
- ✓ Faire l'inventaire des installations à traiter
- ✓ Lister les types de matériaux utilisés (corrosion)
- ✓ Faire le choix des process de nettoyage et/ou désinfection
- ✓ Déterminer les équipements nécessaires (fréquence d'utilisation, durée, faisabilité de l'installation)
- ✓ Définir des moyens de contrôle
- ✓ Veiller à la sécurité des opérateurs
- ✓ S'assurer du bon respect de l'environnement

Hygiène : la pratique, le terrain

Etat des lieux

Echec des procédures de nettoyage/désinfection ? (altérations microbiennes, vieillissement prématuré, remise en cause de l'intégrité des surfaces, points critiques)

Nettoyabilité, conception hygiénique

État des surfaces (vieillissement, intégrité, changement d'état)

Paramètres de la procédures, qualité de l'eau

Procédure, **outils**, indicateurs adaptés

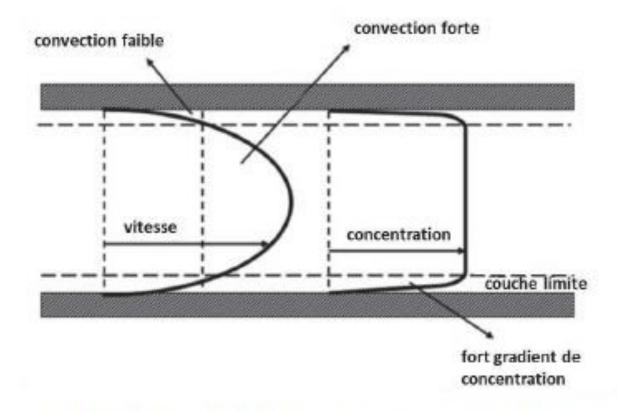
Environnement du vin (sols, murs, air ambiant)

Formation du personnel...

Qui conduisent à des surconsommations d'agents chimiques et surconsommation d'eau et mettent en danger l'intégrité des surfaces!

Double enjeu : améliorer l'efficacité des opérations d'hygiène (points « critiques ») et mieux gérer les ressources en eau

Echec des procédures de nettoyage/désinfection Les réponses :


- Nettoyabilité
- Améliorer la performance des opérations d'hygiène (équipements) (Efflu Eau)
- Alternatives (nouvelles technologies)

Gestion de l'eau dans les opérations d'hygiène

- Limiter les volumes d'eau pour les étapes de rinçage (Efflu Eau)
- Qualité de l'eau (plan d'hygiène)
- L'eau recyclée

Bio-adhésion: les facteurs favorisant

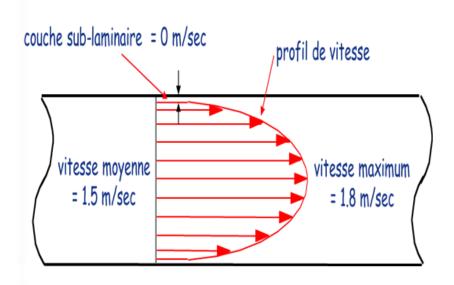
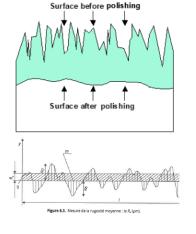
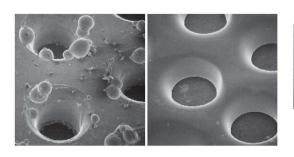
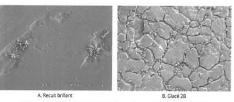


Figure I-11: Représentation du profil de vitesse et de concentration en régime

laminaire (adaptée de Busscher et van der Mei (2006))

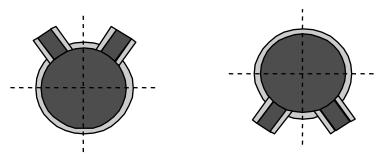

Propriétés de surface


Rugosité: Le passage d'un état de surface de 0,5 à 1 µm Ra double le temps d'enlèvement d'une


même quantité de souillure

Finition	Rugosité Ra en µm	
Glacé de laminage à froid 2B	Ra≤o.4 μm	
Recuit Brillant 2 R	Ra≤o.1 μm	
Poli miroir	Ra≤o.o5 μm	
Electropoli	Ra≤o.o3 µm	

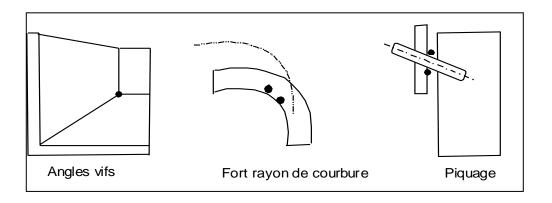
Tableau 2 : Quelques valeurs de rugosité pour des surfaces en acier inoxydable


L'état de surface peut évoluer dans le temps par oxydation, corrosion, rayures, abrasion, usure, encrassage....

Le nettoyage chimique lui-même est susceptible d'endommager les surfaces.

Le maintien d'un état de surface adapté nécessite donc des conditions d'utilisation spécifiques, à faire préciser par le fournisseur.

Aptitude à la vidange, absences de points morts et d'angles vifs


Privilégier l'absence de points bas, points morts, angles vifs (figure : positionnement des canalisations d'aspiration et de refoulement sur une pompe)

Stagnation de liquide dans le corps de pompeAptitude vidange

Accessibilité aux surfaces au contact du produit

Une bonne accessibilité aux surfaces en contact avec le produit : démontage facile (figure : principales difficultés de nettoyage)

Améliorer la <u>nettoyabilité</u> des surfaces pour un meilleur nettoyage et une meilleure désinfection

Démontage + Trempage

Points critiques	Bilan après soutirage	Après procédure poussée	Après procédure stricte (+/-démontage)
Vanne 1			
Vanne 2			
Robinet dégustation			
Joint couvercle			
Paroi interne			
Pompe « entrée »			
Pompe « sortie »			
Pompe « corps interne »			
Tuyau 1 vers pompe			
Tuyau 1 vers 50hl			
Tuyau 2 vers pompe			
Tuyau 2 vers cuve 50			

• Améliorer la performance des opérations d'hygiène

- Adapter les outils et les équipements

Action mécanique : outils adaptés

1er cycle

2nd cycle

3ème cycle

4ème cycle

Rotation sur 2 axes

Laveur orbital : la souillure sous différents angles pour optimiser l'action mécanique

Action mécanique : outils adaptés

Nous utilisons notre canne HR55 d'une longueur de tige de 140 mm, il nous faut un nettoyeur HP eau chaude avec un débit de 1000 à 1200 L/Hr à 180 Bars.

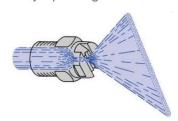
Celle-ci est suspendue par le flexible HP pour permettre de la positionner au point milieu de la hauteur.

Le diamètre maximal d'action est de 2300 mm et le volume maximal est de 100 Hl.

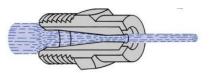
Cette canne HR à moteur hydraulique à eau est étanche et supporte une température maximum de 90°C.

Type de contenant	Cycle eau chaude	Cycle eau froide	Consommation d'eau	Economie d'eau
Cuve Inox 10-50HL	10 à 12 min	5 à 7 min	255 à 323 L	69%
Cuve Inox 50-100HL	15 à 17 min	10 min	525 à 567 L	50%
Foudre bois 10-50HL	17 à 25 min	10 min	459 à 595 L	35%
Foudre bois 50- 100HL	25 à 30 min	10 min	735 à 840 L	30%
Amphores	15 min*	10 min*	425 L	47%
 *Avec 2 paliers de température en chaud et en froid 				

- Plus de chimie à utiliser
- Gain de temps (travail en temps masqué)
- Sécurité au travail



Action mécanique : outils adaptés


1) Cuve Inox:

Buses coniques longues, jet concentré angle 0°

2) Petits foudres bois et amphores : Buses jet plat angle 5° ou 15°

3) Foudres bois: Buses jet crayon angle 0°

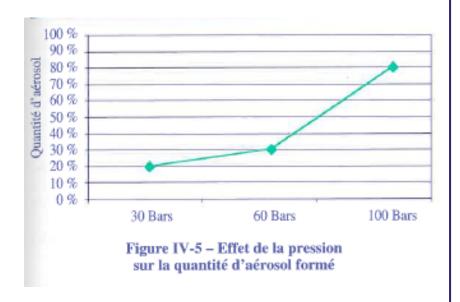
• Action mécanique : paramètres adaptés

Pression et débit – circuits fermés

La vitesse recommandée, dans le cadre des tuyauteries est de à 2 m/seconde (tubes)

Diamètre maximal (mm)	40	50	65	80
Débit volumique (m³/h)	9	14	24	36

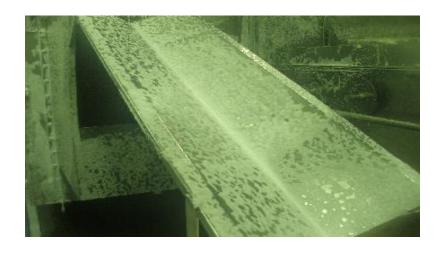
LE CAOUTCH



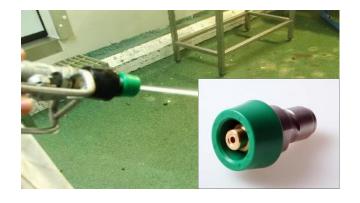
Booster votre hygiène : optimiser la procédure

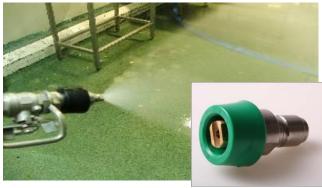
Outils adaptés

Moyenne pression: 30/40 litres; 25 bars



Booster votre hygiène : optimiser la procédure


Outils adaptés


consistance de la mousse

Appareil	Canon à mousse	Centrale mousse
Volume	50 à 110 L	500 L
Nombre d'utilisateurs simultanés	1	4 à 8
Consommation d'air	$7 - 10 \text{ m}^3/\text{h}$	7 m ³ /h par lance
Débit	5 – 10 L / min.	6 L / min.
Longueur de tuyau de	7 – 10 m	15 – 20 m

distribution

+ force d'impact et portée du jet + surface de l'impact

Automatisation

Automatisation des étapes ;

- Gain de temps
- Meilleure gestion de l'eau (validation rinçage)
- Sécurité

• Gestion de l'eau

2mètres DN 50

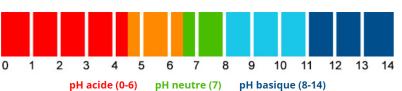
15mètres DN 50

Essais de rinçage à 0.3 m/s et 3 fois le volume des canalisations.

Essais de rinçage à 1.4 m/s et 1,5 fois le volume des canalisations.

Essai 2	conductivité (μS/cm)	Turbidité NTU	A 280	Intensité colorante (A420+A520)
Eau du réseau	470	0.33	0.00	0.00
Test à blanc	470	0.42	0.01	0.01
Essais 0.3 m/s	473	1.38	0.03	0.03

	conductivité	Turbidité		Intensité
Essai 2			A 280	colorante
	(μS/cm)	NTU		(A420+A520)
Eau du réseau	460	0.18	0.00	0.01
Test à blanc	462	0.54	0.00	0.00
Essais 0.3 m/s	460	0.32	0.01	0.01



• Bonnes pratiques : le contrôle

Contrôle chimique : test de rinçage

- Papier PH
- Indicateur coloré
- Bandelettes matières actives (H202, APA, Chlore)

TYPE : Fiche	Référence procédure : PRO 010
TITRE:	Annexe n°: 05 Page: 1 / 1
TESTS DE DETECTION	Responsable : R.Q.E.
	Visa: T.VINAY
	Date de mise à jour : 10 10 2017

Produit à détecter	Test à utiliser	Détection		
1 Todalic a deceded	Test & danser	Présence	Absence	
Eau de javel (chlore) et produits chlorés	Orthotolidine	Coloration jaune à rouge	Incolore	
Ex : EnduroPlus, Deogen SL	Bandelettes Chlorine Test	Coloration rose	Incolore	
Ozone	Orthotolidine	Coloration jaune à rouge	Incolore	
Ozone	Pastilles DPD4	Coloration rose	Incolore	
Peroxyde d'hydrogène Acide péracétique Ex : Divosan Trace, Divosan Plus, Diverfoam Active	Bandelettes peroxyde	Coloration bleue	Incolore	
Solution alcaline Ex : Soude, EnduroPlus,	Phénolphtaléine (à utiliser en priorité)	Coloration rose	Incolore	
Deogen SL, Spectak G, Divosan Saniperfect	Bandelettes pH	pH > 7	pH de l'eau*	
Solution acide Ex : Pascal, Acifoam, Aciplusfoam	Bandelettes pH	pH < 7	pH de l'eau*	
Ammonium quaternaire Ex: - Tego 2000 - Divosan Saniperfect (car présence d'amines)	Bandelettes Ammonium quaternaire ou Albustix ou Quantofix	Lecture selon l'échelle colorimétrique		
	Test adoucisseur (solution hydrotimétrique)	Mousse	Pas de mousse	
Eau adoucie	Bandelettes dureté	Lecture selon l'échelle colorimétrique		
pH d'une solution	Bandelettes pH	Lecture selon l'échelle colorimétrique		
Sulfites	Bandelettes « Sulfit test »	Lecture selon l'échelle colorimétrique		

Valeurs à adapter en fonction du pH de l'eau testée (plate, gazéifiée...)

Bonnes pratiques

- Le temps consolide l'adhésion et la bio-adhésion
- La chaleur est un allié au nettoyage : l'eau chaude accélère la réaction chimique (optimum : 45°C), « ramollit » et facilite le décrochement des souillure, dilate les pores du bois
- Interférence organique : une détergence est obligatoire avant toute désinfection
- Alternances entre procédures chimiques et thermiques
- La traçabilité est recommandée (GBPH) pour les procédures et les moyens de contrôle
- La formation de l'ensemble du personnel est importante
- Afficher les fiches techniques et de sécurité des formulations
-
- Optimiser la procédure = optimiser les volumes d'eau !

Avantages et inconvénients de l'utilisation de l'eau chaude lors du nettoyage :

Avantages:

- L'eau chaude ramollit les souillures et entraîne la fonte des graisses et du sucre elle facilite leur élimination.
- L'eau chaude est meilleur détergent que l'eau froide, et facilite le décrochement des souillures.

Inconvénients:

- L'eau chaude coagule certaines souillures protéiques (sang, œuf, protéines de viande ...).
 Les souillures forment alors à leur surface un film très fin, très difficile à nettoyer, et qui peut servir de support au développement des micro-organismes. Ceci a lieu pour une température d'environ +65°C.
- Une eau trop chaude peut provoquer l'évaporation de certains principes actifs renfermés dans les détergents et les désinfectants. Ceci peut partiellement inactiver les produits de nettoyage, et donc diminuer leur efficacité.
- Ceci est le cas pour de nombreux désinfectants chlorés ou iodés.
- L'utilisation d'une eau trop chaude provoque la formation de gouttelettes d'eau en suspension (buées, brouillards) qui peuvent contenir des micro-organismes, et donc recontaminer les surfaces nettoyées.

Attention : la température de l'eau doit aussi tenir compte :

- De la résistance thermique de certains matériaux (caoutchouc, verre ...),
- De la résistance à la chaleur de la peau (maximum 50°C).

Le nettoyage à l'eau chaude a des avantages notables, mais pose aussi des problèmes. Il faut donc trouver un compromis entre une eau chaude mais pas trop!

Il a été déterminé que la température optimale de l'eau de nettoyage est d'environ 45°C, compte tenu des éléments cités plus haut.

